b]

“T"MATHEMATICS RESEARCH%’RV,‘ UNITED STATES ARMY
/ —HE UNIVERSHY¥-OF WISCONSIN e

Contract No.: DA-31-124-ARO-D-462

2
-~ ACCELERATING THE CONVERGENCE
OF DISCRETIZATION ALGORITHMS (

{ _Victor Pereyra/

-— e
N

. MRC-Teehnical Summary Report ‘#687 -
-October 1966

Madison, Wisconsin



ABSTRACT

Acceleration techniques for discretization algorithms used in the
approximate solution of nonlinear operator equations are considered.

Practical problems arising in the solution of large systems of nonlinear
algebraic equations are discussed.

These techniques are applied to the approximate solution of mildly non-
linear elliptic equations by finite differences, and several numerical examples

are given.



ACCELERATING THE CONVERGENCE OF DISCRETIZATION ALGORITHMS

Victor Pereyra

Introduction

In a recent paper ( Pereyra [1966]) we have developed the theory of the
method of deferred corrections. Applying this procedure we were able to
accelerate the convergence of discrete approximations to solutions of certain
types of nonlinear operator equations in Banach spaces.

In Section I of this paper we present another method for accelerating
convergence. This is the generalization of the well-known Richardson's
""deferred approach to the limit" (Richardson [1910]) and we call it the method
of successive extrapolations.

In Section II we state the principal results about the linear deferred
correction method studied in our earlier paper. The analysis of both types of
acceleration procedures is based on the general presentation given by
Stetter [1965] for the discussion of the asymptotic behavior of the global
discretization error in this kind of problem.

When applying these procedures to boundary value problems it is necessary
to solve large systems of nonlinear algebraic equations. Recent papers by
Bers [1953], Greenspan and Parter [1965], Ortega and Rockoff [1965], and
Schechter [1967), have considered generalized Gauss-Seidel or relaxation

methods for this. On the other hand, one can apply the standard Newton

Sponsored in part by the Mathematics Research Center, United States Army,
Madison, Wisconsin, under Contract No,: DA-31-124-AROrD=462, and in part
part by NASA Reseaz:;:g Grant NGR-50-022-028; /;; A



method; this requires the solution of a large system of linear equations at
each step, which may in turn require an iterative process. Thus there will
be outer and inner iterations, and while both kinds of iteration have been
studied extensively (cf. Kantorovich and Akilov [1964], Varga [1962]) little
is known about their combined behavior.

Bellman and Kalaba [1965] (p. 118) and Ortega [1966] have pointed out
that it is an open problem to decide how accurately to solve the linear
equations at each Newton step in order to have an overall optimal method.

In Section III we give a partial answer to this question. We prove there a
theorem similar to Mysovskii' s theorem (cf. Kantorovich and Akilov[1964]) on
Newton' s method which gives a constructive (and quite simple) procedure
for interrupting the inner iterations while still preserving the quadratic
convergence of the outer iteration. In the Appendix we give some numerical
results using this procedure.

While it is always interesting to have means for accelerating the conver-
gence of an approximate method there are problems for which this is not only
interesting but essential. This is the case with boundary value problems
for partial differential equations. Many of the relevant points on the practical
application of finite differences and acceleration techniques to linear partial
differential equations have been made in an excellent paper by Fox [1950]( *) .
It is only in this and other papers by Fox and his collaborators in which it is
possible to find any significant information at all about the numerical perfor-

mance of acceleration procedures in multidimensional problems. The best

* We are grateful to Professor L. Fox for calling our attention to this reference.
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reference to this work is Fox [1962]. Most of Fox's qualitative comments
apply without essential changes to the nonlinear case we consider in

section IV. There is, of course, the added complication of having to solve
nonlinear difference equations and we provide also a quantitative (asymptotic)
analysis.

In section IV we discuss in detail the application of the different accel-
eration techniques to the solution of mildly nonlinear elliptic equations. The
numerical solution of this type of problem by means of finite differences has
been studied by Bers [1953], and more recently by Parter [1965], and
Greenspan and Parter [1965]. Other numerical results are reported in
Greenspan [1964] and Greenspan [1965].

In section V we present some of the numerical results obtained in
solving mildly nonlinear elliptic equations. These examples serve two pur-
poses. On one hand they show the actual performance of the methods as
applied to non-trivial problems. On the other hand they provide a way for
comparing the two classes of techniques, and some comments on this are
offered in section VI.

We are indebted to Professor Donald Greenspan and Professor Colin Cryer
of the Mathematics Research Center for their continuous interest, support,

and valuable suggestions.
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I. Acceleration techniques for nonlinear problems.

1. In this paper we will be dealing with the numerical solution of nonlinear
operator equations by means of discretization algorithms. In particular we will
be interested in the discussion of techniques for accelerating the convergence
of such algorithms as the mesh size approaches zero.

2. A frequently used example of this family of problems is the two point
boundary value problem. We treat this problem in detail in order to make the

sense of the generalization to operator equations more comprehensible. Let

y'" - f(x,y) =0 a<x<b
y(a) -a =0 (1.1)
y(b) - § =0 ,

where f >0.
Y

We assume that f is as smooth as is necessary to ensure the validity of

all our expansions. In this case the continuous problem (1.1) has a unique

solution y(x) (cf. Henrici [1962]). In operator notation we can write (1.1) as:

Fy) =0 (1.1Y
where F:D — E, and D,E are contained in the Banach spaces C( 2) [a,b] and
Cla,b]X R? , respectively.

3. A very simple discrete version of (1.1), which allows us to obtain

approximate values of y(x) at points X, is given by:

-2 .2 ) C
h 6Yi-f(xi,Yi)—0 l<i<n-l

° (1. 2)

where
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x, =a+ih, (i=0,1,...,n) ,

h=(b-a)/n ,

and where

62Y. =Y., . - 2Y. +7Y,
i i i-

i+l 1 *

This is a system of n-1 nonlinear equations which has to be solved for

the Yi . If a solution exists, we expect Yi - y( Xi) to be small in some sense.

In operator notation we can write ( 1. 2) as

<I>h(Y) =0

where Qh :D, - E D ntl .

h™ Bho» Dh =B =R

h h

(1.2")

4. For any sufficiently differentiable function u(x) it is easy to show

that the expansion

h~2 62u( Xi) - f( xi,u( xi)) =u'( xi) - f( xi,u( xi)) +

2 2j+2 2j 2N+2
+jg G u( ) )(Xi)h J+O(h )

(1.3)

is valid. This asymptotic expansion in powers of h shows the relationship

between the continuous operator in (1.1) and the discrete operator in ( 1. 2)

=2

The expression h 62u( Xi) -u”(xi) is sometimes called the local

discretization error or truncation error.

For the development of our theory, the existence of such a relationship

is essential. In order to formalize this statement we have to introduce some

new operators. These are the linear, bounded operators Ah, Ag which

relate the continous and discrete spaces:

D———>F
A AO
h ) h .
h
D >'E
h h
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Then the generalization of (l.3) reads:
For each ye D

N p, p
2 (A y) = A {F() + ),h P (y) )+ O(h R (1.3")

j=l
where the Pj are given operators, and the pj are rational, positive numbers
satisfying

<p. <p.<...< .
0<p <p, PN+l

F and oy will be assumed to be at least twice Fréchet differentiable, and
in general, the spaces E, D, Eh, Dh can be arbitrary Banach spaces.
5. Let us assume for a moment that (1l.1') and (1. 2') have unique

solutions y, Y(h). In this case we can define

e(h) =¥(h) - A (1. 4)

hY

the global discretization error.

Under fairly general conditions Stetter [1965] has proved that if (1. 3')

holds (with Fj independent of h) then also

e(h) =4, gejhpj ¥ O<hpN“) (1.5)
j=1
where the eje D, and are independent of h. In particular this holds for
problem (1l.1) with the discretization (1l.2).
One of the main assumptions in Stetter's theorem is that the operator

d, be stable. By this is meant that for any e, Ve D, there exists a constant

h h

K, which is independent of e and h, such that
lel<xlat(mel , (1.6)

where <I>}'1 is the Fréchet derivative of <I>h .
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6. The ej depend, in general, on the exact solution of (1.1'), which
is of course unknown. Nevertheless, the knowledge that such an expansion
exists is enough to allow us, in principle, to improve upon the basic approx-
imate solution Y(h).

We say that the method (1. 2') is convergent for h — 0 if

e(h) =o(l) ,

and that it is convergent of order p if

e(h) = om®) . (1.7)

It is well known that (1. 2) is convergent of order 2. We will now seek
methods for increasing the order of convergence, starting from the basic method
(1l.2'") and assuming the properties (1.3"), (1.5) and (1.7), with p equal to
the Py of (1.3'). We will assume that ®, has the mean value property,

h

i.e. that for each Vl’ Vze Dh , there exists a linear operator M(Vl’ VZ) such that

<I>h( Vl) - <I>h(V2) = M( Vl,VZ)(Vl-VZ)
and
M(Vl,VZ) —@Ll(V) =o(l) for Vl, V2 —-V.
Of course, in general, M does not have to be unique. Finally we also assume
that there is an M of this kind which is stable.

7. A well known technique that goes back, at least, to a paper by
Richardson [1910] is that of extrapolation to the limit.

The idea is that if we know the error of (1.2'} to behave like (1.5) then,
by computing several approximate solutions for different steps h, and com-
bining them appropriately we can obtain a much more accurate solution.

For instance one could compute approximate solutions of (1. 2) with

h = hl’ 2—]}11, ceey Z_Nh These particular grid sizes are such that the

K
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grid points of the coarsest mesh (h :hl) belong to all the other grids. Itis
at these points that we will be able to obtain a more precise solution.

The name of Romberg is usually associated with the scheme used in
performing successive extrapolations. To be precise, in 1955 Romberg
presented a scheme for the numerical integration of continuous functions,
having as a basic method the trapezoidal rule and improving accuracy by
successive extrapolations. There is no conceptual change in the more
general situation occurring in the present context. Among the authors who
have recently contributed to extend the domain of applicability of this method
we can mention the names of Bauer, Rutishauser, Stiefel, Gragg, Bulirsch,
Stoer, and Laurent. Reference to their work can be found in Gragg [1965].
The only attempt to set up a general theory is due to Stetter, as we have
mentioned before. However, even in Stetter's paper it is left implicit how
the general successive extrapolation procedure is to be applied to functional
equations. Consequently, we feel justified in using some space in order

to state precisely the method of successive extrapolations for functional

equations (S. E. for short).
(%)

8. " To do so we assume that we are solving approximately equation
(1.1") by means of (1.2'), that (1.1') has a unique solution, and that ( 1.2')
has a unique solution that we can compute for any h in discussion.

For any given N and hl > h2 >...>h,. >0, we assume that there exists

N
* A summary of the results of § 8 through §11 and some of the numerical results
at the end of this paper have been presented to the SIAM National Meeting

of May 1966 in Iowa City.
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a family of operators by (i=1,...,N) by, * Dh - Dh , such that:
j j ' 1

for each Ve Dhj, Lphj(V) = Ahl( v) (1. 8)

where v is any element of A;II(V) , and N q)h H§ 1. These operators will

) )
be well defined if

for each vl,vzeD, and j=1l...,N ,

Ahjvl = Ah].VZ implies Ahlvl = Ahlvz .

|

If the Dh. are finite dimensional subspaces of D such that JU D =D,
1
and the Ah, are projections, then by taking LLIh. = Ah_ these properties
} 3 )
are equivalent to savying that the th. form a Schauder basis for D. (%)
If for problem (1.1}, (1.2) we c]hoose th‘ as the linear operator which
j |

maps V=(V,V,...,V _j-1) into the vector W of D_  defined by \
o’ 'l n, 2 h,

W = (Vo’vzj-l’ cony V( nl_l) 23-1, anzj"].) , then we see that all the conditions
are fulfilled.

9. Now we can easily prove the following

Lemma 1.1 If U( hj) is an approximate solution of order P i1 and e(h)

has an expansion {1.5) up to the order p(r , then

g P, P
y Uh)-au-a )b e =0(n °h) . (1.9)
i j hl hl =1 ) i ]

* A sequence of finite dimensional subspaces Dn of a Banach space D and

projections Pn: D —’Dn is called a Schauder basis for D if Drl C Dn+l ’

'gﬁ =D, lpl <M, and PP =P for nzm.
n n m n m
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Proof:

From ( 1.8) it follows that

Ahlu = LIJh.(Ah'U)
] ]
a g
Ay h.pi e, = Yy (A
1i=m1 7 1 j

By
lhj e) - (1.10)
ji=

Thus, the left hand side of (1.9) can be written as:

g
P.
b [Ulh) -a, u -ay )b lei]
j 7 ji=l

and because of our hypotheses this is in norm
p p

g
i
<lletny - Ahj 121 nte s coyh

o+1

as we wanted to prove.

10. Now we can state the S.E. method precisely. Let us first define

0
ol s e U (121,2,0.0,N)
i
(0) (0)
T A, u-U =h
; hlu , ) 1"i+l/hl, (1.11)
(0) (0 (0) _ o
v,i_l’ Pv,i =1, 'rv,l—l (vpi=1,...,N)
By Lemma 1.1 we have that
p p
(0) _ (0) . “v N+1
T, -Ahl v§1e"g",i h ¥+ O, ) . (1.12)

With this we can recursively define
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- p - —
(o oD TR kD) (kD)

P . 1 51 U,
y, = K-l f°l 4-l i (i=ktl,...,N) (1.13)
i p b b b4
(k-1) "k _
Py i-1 Ty
(k1) rpk'pv )
gs,k)i _ V- -1 "i-l gf}k'l) (i,v=k+l,...,N) , (1.14)
? (k- l) ’
pk i-1%i- l -1

(k) (k) /g (k LR (k) (k)

v1 v1+l vi k+1 1/ v , (i’v:k+l’oo.’N)o (1015)

The next theorem will show that an expansion similar to (1.12) is valid for

Ti k) = Ah u - ng), and that this expansion starts with v = k+1.
1

Theorem 1. 2: With the definitions and hypotheses above, and if N and the

rates ri are given, then for hiJ 0 the discretization errors Ti( k) satisfvy
N p p
Tﬁk) =4 ), evg(vk-)hiv + o(h1N+l)
1 v=k+l > 1
(k=0,...,N-1) (1.16)
(i:k+1,0.°’N)
where the gi}kl do not depend on hl .
)
Proof: The proof is by induction on k. For i =2,3,...,N, we have
(1) (1) 1 (0)  P1 (0)_(0)
T 7 = A u-U'"= (py . ,r. T =T/ ") =
i h i o} 1,i-1 "i-1 i-1 “i
1 (0) . 1 -1 ’
P, 11711
N v (o0 (0 Py _ () Py +O(hpN+l)
= A o Pl i-1 1-1 9y, i-1M1-1 "%, 1 1 .
1 v=l (0) r 1 -1
l,i-1 i-l1

(1.17)
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For v =1, the term in parentheses in (1.17) vanishes and for v =2,...,N

we have that every term becomes equal to

Ao 1Py P p
v,i-1"i-1 g(o.)h.v e g( l)_h'v ,
1% (0) pl yi 1 v v,l 1
-1
P i-1 Ti-1

and (1l.16) is proved for k = 1.
1f we assume (1.16) to be true for k < N-1, a completely analogous
procedure permits us to pass to k + 1 and the induction argument is completed.

Corollary 1. 3: Under the hypotheses of Theorem l. 2 we have that after k

extrapolations the discretization error becomas

p
(k) (k) Pkl k+2
- - =0,...,N-
An 7Y A 19k, oy oy ) k=0,...,N-l
i=%k...,N (1.18)
with
k-1 L) P41 Pk+1 .
g( k) o= -ﬂ-_ k+l, l-l l_]. . (l. 19)
k+l,l =0 , P,
= (i) LY
Pit1,i-1" i-1
Proof. Formula (1l.18) is the same as (1.16).
From (1.14), for v = k+l we obtain
(k- PP NS S 3 B T U
g (B Tkl il el e k+l,i-174-1
kil i © § Teee T , ,
o1 (k-1) rpk B kl, i i=0 (i) er+1 4
,i-1 -l Pitl,i-1" i-1

which proves (1.19).
1. In certain very important special cases, (1.19) can be written more

explicitly. For instance, if
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r, =T (i=1,...,N)
(1. 20)
P, = VP, (v=1,...,N}
then the g ( k.) are independent of i and consequently p( k,) = -r( k). =1
vyl 1281 v, 1
for all values of the indices. Thus
k-1
k-1 D341 P4l .Z (J=k) py
g(k) _:—rl_ r "']- :(-].)kr ]=O _
k+l, 1 ]-‘:O pJ+l
r -1
-ik(k+l)p -1(k+l)p
2 2
= (-l)kr 1=(—1)kr k. (1. 21)

The results of §10 and §1l1 are related to Theorem 1 in Bulirsch and Stoer
[1964]; Theorem 1.2 contains one of the cases treated by Bulirsch and Stoer,
while the results of §ll are contained in their other case. Of course, the
discussion of §8 and §9, which allows the basic solutions to be in different
linear spaces is new. The general algorithm of §10 is also new. W. Gragg

has communicated to the author that he has a similar algorithm (unpublished).

II. Deferred corrections

1. A completely different technique for accelerating the convergence of
discretization algorithms is based on an idea of Fox [1947],[1950],[1962].

The corresponding general procedure has been developed in Pereyra [1966] *
Earlier contributors have been Volkov [1957],[1963],[1965], Bickley,
Michaelson, and Osborne [1960], Henrici [1%2], Lees [1%6]’ and Pereyra [ 1965].

Let us discuss the basic idea when applied to the problem (1l.1). Since

* From now on this paper will be referred to as P.
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we know the expansion (1.3), it seems appropriate to use this information in
order to improve our approximate solution. A way of doing this is to replace
the higher derivatives of the solution by sufficiently accurate difference
approximations. In this fashion we will obtain a more complicated basic
method for which, in more general situations, we may not have sufficient
theoretical results. Another possibility, and this is Fox's idea, is to first
solve (1. 2) and then to feed back this approximate solution into an appropriate
difference approximation to the right hand side of (1. 3). Hopefully, solving
(1. 2) with this new right hand side will yield an improved solution.

Passing now to our general problem (1.2') with the expansion (1.3'),
we will discuss a method of deferred corrections which will allow us to obtain

p -

from an h l-solution an hp solution with 15 =Py + min (pl,pz—pl) .

2. The procedure we are going to present will be called the one-step

linear deferred correction for operator equations (L.D.C.).

We assume that there exists an operator S such that

0 £
A, Fju-5(U) - O™ (2.1)

where U is a pl—approximate solution of (1.1') and p* = min(pl,pz—pl) .
Then

U =U-h "e* (2.2)

is an approximate solution of (1l.1') of order L-D = min(Zpl,pZ) . Here e* is
the solution of

¢>'h(U)e*=-S(U) . (2.3)

For the proof of this statement see P. , Theorem 3.1.
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In problem (1l.1) we can take

-2

h
(80N, = -5 6" f(x,,¥ ) (2.4

which has all the desired properties.

Observe that in order to obtain this improved solution we had only to solve
the linear problem (2.3), which is of the same ''size" ( same h) as the
original one.

It is also clear that if Newton's method was used for the solution of
(1.2") then (2.3) has the same structure as a Newton iteration. All these
remarks shows that it is rather economical to gain p* extra orders of
accuracy by means of this method, whenever the computation of S(U) is not
very cumbersome.

An iterative deferred correction (I.D.C.) procedure has been also des-
cribed in P but since its application presents several new problems we prefer

to discuss it in a separate publication.

III. Incomplete nested iterations.

1. In solving problem (1.1') by means of (l.2') we typically find
several nested sequences, which are generally generated by means of iter-
ation procedures. It has been observed( *) that it is not always necessary
to carry out the inner iterations to completion.

In this section we give a sufficient criterion for stopping the inner
iterations without perturbing excessively the final results.

2. We now describe the different iterations.

*Cf. Douglas [1961], Henrici [1962], Pereyra [1965], [1966] , and Ortega
and Rockoff [1965].
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(a) The first level iteration, I., corresponds to solving

l’
® (U) =0 (3.1)
for a sequence of decreasing h. We assume that (3.1) has a unique solution

U(h) and that

U(h) - A u = Oo(h®), p>o0.

(b) The second level iteration, I, corresponds to the solution of the non-

2
linear problem ( 3.1) for each h. We concentrate on linearization methods

and more specifically on Newton's method, i.e.: for a given initial value

V_, I is the iteration
o’ "2

@h(vi)(vi+l—vi) = -@h(vi). (3.2)

We assume that this iteration is defined and that the V.1 converge to U(h) as
i — o,
(c) In many problems the linear equation (3. 2) will also have to be solved

by an iterative procedure, I For instance, if (3.2) is a large system of

3 L
linear equations some of the standard iteration techniques may be used,

generating a sequence WiJ+ which we assume, for j — , convergent to

1

Wi+l = Vi+l - Vi , the exact solution of (3.2).

3. For an equation G(u) =0 we define its residual for ve D, as
r= vl . (3.3)
If u is a solution of G(u) =0 then r =0. For agiven h we would like

to control the iterations I2 and I, by inspecting only the residuals of

3

equations (1.1') and (3. 2) for the successive iterates.

In P we have already studied the effects of prematurely stopping the
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iteration IZ' There we showed that, if @®_ is stable, in order to obtain a

h
ﬁ(h) such that TJ(h) - Ahu = O(hp) it is sufficient that @h(’{}(h)) \=O(hp) s
regardless of how ﬁ'(h) has been obtained.

In anticipation of future needs we will ask that the residual of
q:h (ﬁ(h)) be of the order hq , with g > p. This will ensure that the error

U(h) - ﬁ(h) does not interfere with the asymptotic expansion of e(h) . In

fact, if we know that the exact solution U(h) of (3.1) satisfies

N p o
e(h) =U(h) -4 u= uzzle"h viom T,
and that
2(T(h) - & (U(h)) = Oh") (3.4

then the mean value property and ( 3.4) imply that

M(T(h),U(h)) (T(h) -U(h)) =0mY
and the stability of M proves that
T(h) - U(h) =om% . (3.5)

From the asymptotic expansion for e(h) and (3.5) we obtain

~ N P p
Tih) - au=) eh Y +omd) +om N . (3.6)
v:l v

4. Recalling that all these results are independent of the way in which
'fI/( h) has been obtained we will now seek a stopping procedure for 13 .

To do this we will study the behavior of the sequence {Vi} generated by

2, (V) (V,, =V) =-o (V) +E, (3.7)
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where the residual Ei = || 6i " satisfies certain conditions. The precise
results are contained in the next theorem which is a slight variation of
Mysovskikh's theorem (cf. Kantorovich and Akilov [1964], Chap. XVIII, p. 717).

Theorem 3.1 Let f be atwice continuously differentiable operator mapping the

Banach space D into the B-space E. Let us assume that for given X ¢ D, 806 E,

and a sphere Q = {x: llx—xo | < r} there exist constants B, 1., and & <1 such

that the following conditions are satisfied: [{'(x)] -1 exists on Qo and

hee (=] | <B , Xeﬂo,o<—f—_§}3, (3.8)
N 2(l=a) -1
ez )l < , (39
lens | < x ) xeR (3.10)
H =B%n K <1 3.11
o = b ’ (3.11)
Il&o I < E = anH/ , (3.12)
and
—_— |
r' =N2(l-a) Bn_ ), Hy  <r . (3.13)
k=0
Then the iteration
£ix) (%, —x) =-f(x) + & (3.14)

is defined for all i > 0, Here 51 is such that

le | < B =aHmn (3.15)
and s, Hi are defined recursively by
p UPR L PO R (3.16)
Ho=HE
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For any choice of 61 satisfying (3.15) the sequence {xi} converges 1o a

solution =x*e Qo of f(x) =0. The speed of convergence is given by

i

27-1
I} x*- X, I = By 1 (;21 N2(1=a) . (3.17)
o

Proof. First of all we have that

e -l =llLe: (x )17 lt(x ) I+ E_ < B (1t o _/B) =By N2(1-a)

and thus X. e QO .

1

Since

f(x)) = f(x) -H(x ) - (x ) (x=x) + 60
we oObtain

leexp = 3xllx =% 1%+ E,
and thus

22
e(x) = KB n_ (1) + @ H =H n =mn .

Now if we define

2 2 2
= = = <
H =B nK=B"nKd_ =H <l

and

By =eHm

then we have reproduced the conditions of the theorem for the index i =1.
Suppose now that ( 3.16) and the estimates for ll x,l-x.l_lll and “ f( Xi) ||

are valid for i=1,...,k.

H

We have as before

I

X1 ™ %y | < n B+E, =BN2(l-a) m .
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But

-1
M T H 1T B By o Toee T 20 Himy
and
2 j
2 2
H =H ) = Hi ,=... =Hg
Therefore
~ sz—l
" T oo ’
and
|
- < -
“xk+l X, =N 2(1-a) Bn H_ .

Writing this inequality for all the indeces between 0 and k, and adding

them up we get:

%, -

|

k2l
< -
il ='J2(la)BnonOHo <r ,

and hence Xk+1e Qo.
Also, for any pz0
k+p

j
I -x = N2(1-a) By, ), gl
j=k

Xk+p

which tends to zero for k — « since the series is convergent by hypothesis.
Thus, {Xk} is a Cauchy sequence and there exists x ‘e Q such that

* * .
xk — x . Itisclearthat x 1is a solution of f(x) =0.

If we let p — o« in the above inequality we obtain

k
2°-1
Ix*-x || = NZ(1=a) B sz'l io(sz b N2(1-a) B %o
k"= o Fo §=0 o) b ZE
= 1-H
o]

which is (3.17) .
In order to apply this result to problem ( 3.1) we first observe that con-
dition ( 3.8) is just the uniform stability of <1>h in Qo. The practical
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procedure consists in finding the values of the initial constants B, «, and K,
and a suitable VO in order that (3.11) and ( 3.13) be fulfilled. Once this has
been done we can compute EO and then start the iteration I3 in order to

solve (3.2) (fori =0). The iteration I, will be stopped when

3
J = .18
Fe I =ley(vw)+ e (v )lzE, (3.18)
and then we will take as the next iterate
Vl =V_ + Wl ,

Wl being the last iterate in (3.18). With this we can continue the recursion

computing successively

2
Hl - Hi—l ’
El = ni i ’ (3.19)

and a Awi+l from I3 satisfying ( 3.18) for the subindex i. We will stop when

n; = ch ( 3.20)

where C is a small constant.
If we are interested in solving a general system of nonlinear equations

it is worthwhile to observe that from (3.17) we obtain the error bound
Ix -l sBn 2t N2(l-a) (3.21)
i - i 1_Hi

with very little extra computation.
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IV. Mildly nonlinear elliptic boundary value problems.

l. Generalization of problem (l.1) to two dimensions gives

Au(x,y) U +uyy=f(x,y,u) (x,¥)e 8
u(x,y) =g(x,vy) (x,y)ed8
f(xy,u) 20 (x,7)e 8, lul<oo,

(4.1)

where § is a bounded, open, plane region and its boundary consists of
continuous closed curves. As stated, problem (4.1) has a unique solution

u(x,y) which is in 0(5) ~ C(Z)

(8) (cf, Parter [1965]) { %) .

The structure of solutions of ( 4.1) without restrictions on fu has been
recently studied by Greenspanand Parter [1965], and Parter [1965]. Under more
stringent regularity conditions on f,g and the boundary curve 88 it is
possible to ensure, a priori, that ue C(p) (5) , P >2. For some interesting
regions with piecewise analytic boundaries having special kinds of corners
it is possible to subtract off singularities appearing in the solution and its
derivatives (at least in the linear case), thus obtaining an associated problem
with a regular solution (cf. Volkov [1963]). In this section we will be
mainly concerned with the application of the highly accurate methods described
in I and II to problems of the form ( 4.1) with solutions of class
c®Ng), N2 2.

2. Let us first consider the case of a general, smooth boundary. As

is customary, we take a square mesh of width h covering $. Let

* Since very little experimentation with these methods have been published, we
emphasize that all the results of this section apply to the linear cases

(Laplace's, Poisson's equation, etc.).
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P = (Pl, coey Pn) be the set of mesh points contained in § , ordered in some
arbitrary but given manner. We subdivide § into three classes. The set of

regular or interior points R(h) containing those mesh points whose four

closest neighbors in the x and y directions belong to §; the set of
irreqgular points I(h) containing those mesh points which are in § but not in
R(h), and finally the set B(h) of boundary points, consisting of those mesh
points belonging to 988. Sometimes the neighbors of a point P in R(h)

See Figure 1 for an illustration.

will be called PE’ PN’ PW’ and PS .
AY
\
PB
Pe R(h)
NG P_e I(h)

E)W p P%L\“Q PBeB(h)
A4 ah.
P \

h 5 N\ N

' \ X
Figure 1 8

Any function from P to R will be called a mesh function.

Tor any given mesh function V(P)= VP we define the following finite

difference operator

-2
(2, (V))p =h {V(PE) T VP +VIP) +V(PS) - 4V(P) } = £(P,V(P))

Pe R(h) , (4.2)
(@, (V) = a(P) Pe B(h) .
For Pe I{h) we could choose either
(&, (M), = alQ) Pe I(h) (4.2')
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where Q 1is the closest boundary point in the X,y directions, or else the

more accurate interpolation formula

P 1
(e (Wp=vp - LD yp - 2 g0,
l+a(P) 1+ a( P)
Pe I(h) (4.2")
where Q is as before, PNB is the closest neighbor of P on the same line
dist
as Q, and a(P) = _15.'_(923.) . For instance, if P = PE in Figure 1 then
h
PNB = Po

However, as was observed by Wasow [1955], these boundary approximations
will not generally be good enough to provide an asymptotic expansion of the
type (l.5), even if the exact solution is sufficiently differentiable. In
Wasow' s paper it was shown, on an unidimensional example, that, if the
boundary was not treated carefully e{h) was not differentiable with respect
to h, and thus one could not expect an asymptotic expansion in powers of
h. However, it was shown that if higher order interpolation were used at the
boundary then one could recover the asymptotic expansion. From the point
of view of Stetter's theorem, and always in the case of sufficiently smooth
solutions, we see that the difficulty with the boundary stems from the values
a(P), which depend on the mesh, appearing in the expansion (1.3') for the
local discretization error. In fact, let F e I(h) and assume that (4.2") is

used with P.  in place of P

W Qe 08 to the right of P, and «(P) as defined

NB?
above ( see Fig. l; interpolation in other directions produces similar formulas).

Then for any sufficiently differentiable function wv( %X,y) we have
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P 1

WP) - e VPy) - s 9(Q) == Iia(P v, (P) -
3
h

-z e P (a(P) -l (P) - ...

and we see that for this part of the expansion (1. 3') the operators Fj(v)

are not independent of h and Stetter' s theorem does not apply.

3. One way of avoiding this difficulty is to take higher order interpol-
ation formulas, using only points belonging to 8 . Ideally we would like to
construct interpolation formulas using the closest neighbors of P on the plane
mesh and perhaps some on the boundary 8 §. However, except for the lowest
orders, such as Mikeladzes' formula (ci. Panov][1963], p.38), it is not simple
to construct bivariate interpolation formulas for a general distribution of points
and, when possible, it is difficult to assess the order of the discretization
error. A feasible procedure is to use Newton's interpolation formula in one
dimension, i.e., the generalization of ( 4.2") to higher order accuracy. Thus,
to obtain an accuracy of order hEH-l we need to take P, Q and the q left,

( say) neighbors of P, in order to form

q q ,-
_ ) k ) q)__a_ k-l
(@, (4, ), = V(P) ;ﬂ; ——v(Q) kZzl( = (- v(P_y) (4.3)

which for wve Cq+l(§) has the residual

ahq+l

g+l

Ryle) = T (e, (4.4

where vi{qﬂ) indicates the g+l partial derivative of v in the direction of the

interpolation ,

Again we are faced with a difficulty. It is simple to see that for certain

values of c—l and o we will have
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4 (5 o
kzzl@) atk >1, (4.5)

!

and the matrix e (V) will not be diagonally dominant. In Volkov [1957] it
is proposed to take a multiple of the basic step h, h , in order to make the
sum in (4. 5) less than 1, and it is shown that under certain geometrical
conditions on the region 8§ this can be done for all h and Pe I(h). The
inconvenience of this procedure is that even for g small, say 6, and very
good regions, like circles, it is necessary to take the step h unreasonably
small in order to have enough points to carry the process through.

In some of our numerical experiments we have used the interpolation
formula (4. 3) with the basic step h, disregarding (4.5). From the theoretical
point of view we cannot, in these cases, apply the known results on conver-
gence of U(h) to u, etc. which depend on the diagonal dominance of @1',1 .
On the other hand the numerical results seem to indicate that these properties
still hold.

A modification of the difference correction, which resembles Fox's
original method, gives quite good results even when the basic method uses
the simple interpolation formula (4.3). This will be discussed in §6.

If the region § is rectangular, having grid lines for sides, then none of
these difficulties appears since the set I(h) is empty. Nevertheless,
because the corners, in this case it is not easy to ensure a priori the sufficient

differentiability of the solutions.

4, Going back to (4.1) we see that the operator
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F(u) = Au(x,y) - f(x,y,u) (x,v)ed (4.6)

- 2N+3 =
maps c(s)mc?‘(s) ~ {u:u=gon 89} into C(8) . We take D =¢ (8)

2N+l - , . . . .
and E =¢C (8) - The discrete approximation has been already described in

(4. 2) and either ( 4. 2")or (4. 3), Both @h( V) (for (4, 2")) and cplh( V) (for( 4. 3)) map

the set ¥ of mesh functions over P into itself. We take in Dh = Eh = Rn the

infinite norm

lviey |

jupax, el (4.7)

b

1]

Also Ah(u(x, y)) = A?}(u(x,y)) {u(p) } With these definitions we

Pe P’

can write expansions of the form (1, 3') for o and Dy for each ve D,

N
0 gur 2j (-2) (25+2),. . (2j+2
o, (A, V) (P) =47 {P(v)(P)+j§1h oo v T ke v ) )
+ o™t Pe R(h) ; (4.8)

2N i1 ;
___aP) j (2" (-1 ) 2N+1
tI)h( Ahv) (P) = Ty a(p) jézh j' v (P)+O(h )

Pe I(h) (4.9)
where the derivatives are taken in the direction of the interpolation. TFinally

if we take 3 = 2N in ( 4. 3) then

2N+1

o, (A V) (P) =om™ ), Pe I(h) . (4.9")

lh(
By using (4.8), (4.9') and assuming that @lh is stable and convergent
of order 2 we can apply Stetter' s theorem, obtaining an asymptotic expansion

(1.5) for the discretization error. These assumptions are certainly satisfied
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when I(h) is empty, or when Volkov's procedure is used to obtain diagonal

dominance in @;1 .

In order to apply the procedure SE of Section I.10 we have to define

the ''‘projections" Lph of 1.8. Let us take a basic mesh size hl and define
j

hj = 2_)hl’ i.e. r=3%. With h there is associated an nj , the number
j

of points in £( hj)' Moreover, if i>j then P(hi) D hj) and in particular

2( hl) is contained in all the refined meshes. Now we can define Lph (V) for
j

VeD, , V=(V,...,V ) as
] ]

¢hj(V) =W=(Wl,...,Wnl),(j=2,...,N) ( 4. 10)

with W, =V(P_ ) , P e £(h,) being the same point in the plane as
k Sy Sy j

Pke P(hl) . In other words by, (V) is the restriction of the mesh function V
]

to D, . As an example consider the quarter circle in Fig. 2, h :i, h, = 1 .
hl 1 3 2 6
There nl = 1, nz = 35. We denote by Pi the points in P(hl) and Qj the

ones in ©(h,). Also R(h) = {Pé}, I(h) = {P7,P9, Plo }.oIf U(h))

satisfies
2N+l
&, (V) = O(h ) ( 4.11)
Ih,
i
(see III. 3) then, as in I.10, we can define
U(O) = U(h,) (i=1,2 N +1) (4.12)
i '_\‘}Jh i (l—”""’ ¢
i
k. (k-1) (k-1)
U§k) =2 UL ~Ui-) (k=1,...,N; i=kt+l,...,N+l) (4.13)
4 -1

and the result of 1.1l applies. Recall that all Ui k) € Dh , i.e.: we obtain

1
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more accurate approximations only at points belonging to the coarsest mesh.

The solutions of ébh( VY =0l hq) will be obtained by a combination of

Newton's method and point successive overrelaxation, using the results

of III as the stopping procedure.

The Newton iteration is given in ( 3. 2) and it will be stopped when
q
le, (v)ll <cn

On the other hand, if we consider the matrix &' h( Vi) = Di - Ei - Fi ,
where Di is diagonal, and Ei and Fi are respectively strictly lower and
upper triangular then, ( 3. 2) can be approximately solved for Wi =V -V

+1 i+l i

by means of the iteration formula (13)

) -1 i)
W(i+l -(I—wiLi) {(l—wi)I+o.>iUi} V\/(i+l +

-1_ -1
+ @, (I -wiLi) Di <I>h( Vi) s ( 4. 14)
-1 -1
where 1 <w, <2, and L, =D, E., U, =D, F .
i i i7i i i7i
As we said in III (see Theorem 3.1), 13 will be interrupted when
e +1) <
E, —Il<1>h(vi)W‘iJrl +¢>h(vi)|l aH 1 . - ( 4. 15)
-1
It is well known that a bound B for Il[q)‘h(vi)] “ is
2
-1 d
! < — = .
Ie; (V)] l < -8, ( 4. 16)

where d is the diameter of the set 8. This bound B, together with K,

a uniform bound for fuu , provides the necessary data to compute HO

( see Theorem 3.1).
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5. For the linear deferred correction L.D.C. described in II. 2 we need
to determine the operator S(U) of (2.1). Here p* willbe 2 and

(4)

Pl( u) = - liz-(uX + u; 4)) ( assuming that we have used & with @ = 5).

1h
We take S(U) as the appropriate combination of symmetric fourth
order differences of U at all points at which this is possible, and
unsymmetric formulas at the remaining points. For instance, in Figure 2,
and for h = 11_6 s, we have that at Q16 we can use symmetric fourth
differences in every coordinate direction while at Q3O we cannot. However,
six point unsymmetric formulas, using the neighbors to the left and below can
be applied. For these and other necessary difference approximations we refer
to Ballester and Pereyra [1966].
6. As we mentioned before it is also possible to use the boundary inter-

polation (4.2'") if the LD.C. is reiterated. In this case, the part of Fl( v)

corresponding to points Pe I(h) becomes (cf. (4.9)):
F(v)(F) == 1a(P)(v'(P) = & (1-a(P)) v (P)) (4.17)

where the differentiation is in the direction of the interpolation. Observe
that since Fl( v) is not independent of h the theory of II.4 no longer

. 2, .. . .
applies. We can, of course, give an O(h") discrete approximation to

4
Pl( v) for any function ve C°, namely,

a =2
- - 7 - -
S{A, v) 2 h “{(7+5a) VO (12 +18«) V_ t24av__ + 2(4-7a) v_

1 2 3

+3(e-hv_ ] . (4.18)

(0)

Using (4.18) as S(U), taking U as the solution of tbh( V) =O(h4) and
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iterating according to the formulas
2! (') D = ooty (i=0,1,.00 ( 4.19)

S _ i) 2 ()

we have obtained, after a few steps, results equivalent to the ones obtained

by means of the algorithm of § 5.

V. Numerical examples.

1. In what follows we describe some of the numerical experiments we
have carried out on the CDC 3600 Computer at the University of Wisconsin
Computing Center. They refer to the problem discussed in Section IV and
the methods of Sections I and II. Numerical results for two-point boundary
value problems solved by means of L. D.C. and LD.C. can be found in Pereyra
[1965] and [1966].

The basic program solves a large system of nonlinear algebraic equations
by Newton's method. At every Newton step the resulting system of linear
equations is solved by point overrelaxation. No great effort has been made
in order to find an optimal value for the overrelaxation parameter w . The
comparison of the various methods is sensible only when the same h and w
are involved (cf. Ortega and Rockoff [1965]).

For SE we decide a priori how many extrapolations we want to make
and from the given basic step hl we deduce the smallest h needed. We
solve first for that h wusing as an initial approximation a linear interpolation
of the boundary values. For the larger h's we use as starting values the

solutions just obtained, considered at the relevant grid points. It may be
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of interest to proceed in the reverse direction, beginning with the coarsest
mesh, and using that solution and interpolating to fill the gaps, in order
to start the iteration for the next mesh. Another possible modification is to
use a different type of refinement, i.e. some sequence decreasing slower
i
than (—12—) .
r . , 2 2
2. Problem 1l Let § be the quarter of the unit circle x +y < 1;

x,y > 0. Consider the problem

Au = u2 on 8
2
u =30/(x+2y+l)” on 88 . (5.1)
The exact solution is u(x,y) = 30/( x+2y+1) 2; also K=2.

Problem 2 Same equation as in Problem.l . 8 the square 0< x,y <1.
This boundary value problem has been solved numerically in Greenspan [1964]
with an O( hZ) method.

Problem 3 8 as in Problem 1. Equation

11'2 2 2 u
Au:T(x+y)e on ®

u = -2 log (sin(—;-— Xy + -%)) on 98 ;

K= 11'2/ 2. The exact solution is the boundary function extended to S.
Problem 4 8 as in Problem 2. Equation as in Problem 3.
3. We describe now the numerical results. In examples 1 through 4

the E/(ji) are defined by
(i) _ (i)_ * *
g'* IIuj aul/llapw |,

%
where u is the exact solution.
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Example 1 Solution of Problem 1 by means of the S.E. method of
Section I with k =3 and using 6-th order interpolation at the boundary
(see (4.3)). The numerical results for the two basic mesh sizes hl :'-lé , _116
are given in Tables la and lb . The lack of diagonal dominance at points
in I(h) did not create any noticeable difficulty.

Example 2 Solution of Problem 3 by the same method used in
Example 1. Numerical results are given in Tables 2a and 2b. Again no

| difficulty appeared because of the lack of diagonal dominance. In this example
is seen even more clearly than in Example 1 the hz, h4, h6 improvement of
the successive extrapolates, despite the small difference between the two
basic meshes. Let us remark that when performed without the 6-th order

boundary interpolation no such an improvement was obtained. We also give

in this case the corresponding computation times.

Oolt—-

Example 3 A 4-step extrapolation with h, = was used on

1

Problem 2. The numerical results are given in Table 3a. Also a 3-step

1
extrapolation with h. = 1o was performed. The corresponding numerical

1
results are given in Table 3b.

Example 4 Problem 4 was solved:
1

a) Using a 4~step extrapolation with hl =5 -
Ui 4) did not come out with the expected precision. The only

reason we can suggest to explain this behavior is that the accuracy required

in the inner iteration was beyond the machine's capability (i.e. word length

in simple precision). In such a case the inner iterations will be '"too incom-

plete" to furnish an accurate final result.
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b} Using a 5~-step extrapolation with hl = -14 .

(4)

Here the phenomena observed in (a) is more accentuated. U4
(4) .

is obtained with the expected accuracy (and it is better than U in (a)),

4
(3) is less accurate than U( 4) (3) .

while U5 4 3

and just slightly better than U
We attribute this to the same causes as in (a). It is necessary to observe
that for h5 = %lz the resulting system has 3969 quite complicated nonlinear
equations (see (4.2) and (5. 2)).
c) Using a 5-step extrapolation with hl =1,
This gave the solution at the center of the square with an
absolute error less than 10_8 in about 40 seconds of CDC 3600 computing

time. 1In this case there was no trouble with the highest order extrapolate.

The numerical results are given in Tables 4a, b, and ¢ respectively.

Example 5 Solution of Problem 1 by means of L.D. C. procedure of II. 2
with h6 interpolation at the boundary. The iteration of II. 6 is not
theoretically necessary in this case; however, when applied, the second
iteration gives some improvement over the first, especially for the smaller
h's. We attribute this to the elimination of round-off. Using the notation

of IV.6 we denote by 6( i) the relative error

(1)
A lu*(n) - & ux

[a, w1

We count each iteration (4.18) as a Newton iteration.
Example 6 Solution of Problem 1 by means of L.D.C. with only h“2

boundary interpolation and iteration II.6. The notation is as in Example 5

5
and the numerical results are given in Table 6. For h = 7}% ,U( ) still
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gave some improvement: 8( 3 10—6 , with 150 extra SOR iterations.

Example 7 Solution of Problem 4 by L.D.C. and iteration II. 6.

Numerical results are given in Table 7.

VI. Comparisons between the different methods

Two basic requirements in the solution of boundary value problems by
finite differences are the desired accuracy &, and the desired "minimum
definition' of the numerical solution, i.e. the minimum number of points
(coarsest mesh) at which the solution is needed for practical purposes.

These requirements, and the available computing machinery will
generally be the main guidelines in choosing a method of solution or,
ultimately, in deciding if the problem can be solved at all. The two kinds
of methods of high order accuracy we have described and used in the former
Sections have particular characteristics that make them convenient in a
wide range of applications.

While our numerical examples are significant by themselves we have in
mind in this discussion possible applications to problems in higher dimensions:
three dimensional elliptic boundary value problems, parabolic equations,
etc. for which storage and computation time are even more critical factors
(cf. Forsythe and Wasow [1960], pp. 11-14 for some interesting figures and
predictions for the case of linear equations; seven years after these figures
have been published three dimensional problems still cannot be solved either
very accurately or in too much detail ).

If high accuracy is required (say & = 10_7) but not necessarily high

definition (i.e. basic mesh h, not too small) then it is clear that the usual

1
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criticism about the standard O(hz) method is very much valid. In fact we

0 -1
see from Table 4a that in order to reduce 6(1 ) to less than 10 we

would need to take a mesh h < 300 { 64000 points) which would give an
accurate but exaggeratedly detailed discrete solution. On the other hand,

by using three extrapolations and a finest mesh of _612 (~ 4000 points) we
have obtained the solution at 49 points with the required precision. If we
need not only high precision but also good definition then with some extra
work the L D.C. procedure gives us the solution at 900 points with accuracy
4><10_7 by using h :?lf (see Table 7). In conclusion, S.E. is of simpler
application than L.D.C. and in principle can give more accuracy for a given
basic mesh. However, as we see from some of our computation times, the
most significant computation in S.E is the solution of the basic problem for
the finest mesh. Thus it is fair to compare three or four extrapolation steps
to one application of L.DC. for the finest mesh used in SE. In this case, at
least in our examples, the precision obtained is comparable while we obtain
much more detail from L.D.C.

Another factor which has not been considered here but which can be a
source of difficulties is the ill—-condi\tioning of the system of equations for
small mesh sizes. This has been pointed out in Fox [1950] and it is known
to generate difficulties in the solution of differential equations of higher
orders, such as the biharmonic equation. This is then still another reason
for keeping the step size reasonably large. Moreover, since here the
difficulty is intrinsic to the problem it is unlikely that it will be solved by

the appearance on the market of faster and larger computing machines.

#687 -37-



It is our hope that the iterated deferred correction procedure
will give both definition and accuracy for any given reasonable specification,
thus providing a more flexible tool for the accurate solution of multidimen-

sional boundary value problems.
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Table la

Al =yl 30 9 Method: Successive extra=-
u=u ’ u = on .
(x+2y+1) 2 l ) polations; 6-th order
4 1 X boundary interpolation.
i 1 2 3
1 1 1
by 10 20 40
ni 67 292 1214
w, 1.3 1.5 1.5
i
6(10) 1.5x10™3 4.3%10% 1. 1x10"4
g%” 1.5%10°° 5.2%10"° 1.7x107°
Newton iter.
( Total SOR iter.) 4(28) 4(171) 6(472)
Table 1b
i 1 2 3
1 1 1
by g % EY)
n, 41 183 770
i
w, 1.3 1.4 1.5
1
£ 2.3%107° 6.7x10" % 1.7x10" 2
i
g 2.3x107° 1.7x107% 1.1x107°
1
Newton iter.
4 (43 3(66 7(306
(Total SOR iter.) (43) (66) ( )
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Table 2a J

2 1

Au = -T-rz—(x2+y )eu, u=—210g(sin-g(xy+%:))on -
Method: Same as in Table 1. !

i 1 2 3

1 ] ]

hi 10 20 40

wi 1.3 1.5 1.5

g(io) 5.2x10" 4 1.4x10"% 3.5%10°°2

g(il) 5.2x10"4 1.5x107° 2.2x107"
Newton iter.
(Total SOR iter.)] (25 10(102) 6 (518)

Time: 3! 25"
Table 2b
i 1 2 3
1 1 1

hi B 16 32

coi 1.3 1.4 1.5

g(io) 8.0x10"% 2.2x10"% 5.5%107°2

g(il) 8.0x10 % 3.1x107° 8.1x10™ "
Newton iter.

8

(Total SOR iter) L (28) 2(60) 5(333)

Time: 1' 30"
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Table 3a
2 30 g ,
Au=u, u-= (_’E}W on Method: Successive extrapolations.
1 f3

X
-
i ] 2 3 4
h L 1 L 1
i 8 i6 32 64
n, 49 225 961 3969
o 1.7 1.7 1.8 1.8
6(10) 2.3%x10™3 6.7%x10 4 1. 7x10”% 4.4%107°
g,(il) 2.3%10°2 L.ox10 % 1.9x10~° 1.6x108
Newton iter. 6 8
( Total SOR iter. ) (48) 3 (4l) 4 (66) 5 (483)
Time: 7' 21"
Table 3b
i 1 2 3
1 1 1
by 10 0 0
n, 81 361 1521
ooi 1.3 1.5 1.5
5(10) 1.5%10> 4.3x10"% 1.ix10"4
6§1) 1.5%10™> 5.2%x10"° 8.0%10™"
Newton iter.
7 8
(Total SOR iter. ) 4 (36) 3097) 10 (638)
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Table 6

Same problem and method as in Table 5; h2 -interpolation at the

boundary.
(0) (1) (2) (3) (4) Newton iter.
h
£ £ g & & (Tot, SR iter,)
1—%) 2.1x107° | 6.2x10™% | 4.3x107% | 2.1x107% | 2.5%107% 9(112)
—2% 5.4x107% | 1Lex10™* | 6.7x10™° |1.7x10™° | L7x107% | 11 (576)
Zl5 Lax107* | 4.7x107° | Lex107® [5.2x107% | 2.5x107 | 9 (101
Table 7
2 s 2 v
o™
Au:—z(x +y)eu, u = -2 log ( sin %(xy+%)) on 1
Method: LDC iterated. 1T X
(0) (1 (2) (3) [Newton iter.
h & 2 2 E Tct. SR iter )
15 5.4%10°° 3.6%x107° - - 3 (16)
:i— 2.6x107° | 6.1x107% |5.1x107% - 5 (50)
L -4 -5 -5 -5
3 | 8.2xw0 7.5%10 4.8X10 4.5X10 8 (132)
lié 2.1X10° 7.4x107% |3.0x107° 2.8%x107° 8 (170)
_ _7 -
Lol s.4x10™° | 5 8x10 4.3x1077 - 6 (378)
32
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Table 8

w=1 w=1.53 w=18
Method I 98 (98) 28 (28) 71 (71)
Method 1I 4 (204) 4 (65) 4 (148)
Method III 15 (105) 11 (30) 14 (73)
Method IV 25 (98) 21 (30) 33 (72)
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APPENDIX

Bellman, Juncosa, and Kalaba [1961], Greenspan and Parter [1965], and
Ortega and Rockoff [1965] have reported numerical experiments for the problem

( *) Au = eu R u(x,y) =x+2y on the boundary of the

unit square. They generate the nonlinear difference equations in the same
way as described in Section IV. Greenspan and Parter gave results for two
different schemes:
Method 1I: take one Gauss-Seidel sweep per Newton iteration;
Method II: solve the linear systems of Newton's method by SOR.
Ortega and Rockoff have investigated these for varying values of the
overrelaxation parameter and the figures for Methods I and II in Table 8
are from Ortega [1966] who graciously made them available to us before their
publication. We compare these two methods with our procedure ( Theorem 3.1)
for stopping the inner SOR iterations. Since the previous authors used a
convergence criterion of the form

6
( %) v,

i+l Vi " = 10

(in the notation of Section III), we have to modify the convergence criterion

given by Theorem 3.1.

Lemma With the notation and hypotheses of Theorem 3.1, suppose that,

given &, we proceed as indicated by (3.19) until

a H :Ei_l<0z 6/4B . (1)

i-1 Mi-1

and then before computing V., we replace E,| by /Ei—l = £/4B. Taking also
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i = Ei—-l’ then

IV,

i+l—Vi”§ g . (2)

Proof: If Vi+1 were computed exactly (Ei = 0) then we would have

1V,

- < < - = < .
vl = B SB(l~e)H,_jn_ +E_|)= &2 ( 3)
Let us call /\\]/Hl to the solution obtained by allowing the residual to be in

—
norm at most as large as Ei . Then

V -V = = = E
Plnally ( 2) follows from ( 3) and ( 4) .

It is clear from this proof and Theorem 3.1 that “ 3 Vi) H = is a

N
more convenient convergence criterion than ( 2), especially considering the
straightforward error estimation given by ( 3. 2}1).

In Table 8 (p. 44) we give the results of Method I and II as applied to(*)
with a step size of h = 0,1. For the inner iterations of Method II ( *%) is
used as a convergence criterion.

For Methods III and IV we start with an empirical criterion for stopping
the inner iterations until HO <1 when we can switch to the theoretical
criterion of Theorem 3.1. 1In Method III the starting procedure consists of
reducing the residual of the linear equations at the i-th Newton step below
”5’1 = 4 X (0,25) 1 , but allowing only a maximum of four SOR sweeps. In
Method IV we use Method I, which is known to be convergent, as a
starting procedure. The first figure in Table 8 indicates the number of Newton

iterations while the figure in parentheses indicates the total number of SOR

sweeps.
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